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ABSTRACT: In 1935, the olfactory route was hypothesized to be a
portal for virus entry into the central nervous system (CNS). This
hypothesis was based on experiments in which nasophayngeal infection
with poliovirus in monkeys was prevented from spreading to their CNS
via transection of olfactory tracts between the olfactory neuroepithelium
(ONE) of the nasal cavity and the olfactory bulb (OB). Since then,
numerous neurotropic viruses have been observed to enter the CNS via
retrograde transport along axons of olfactory sensory neurons whose cell
bodies reside in the ONE. Importantly, this route of infection can occur
even after subcutaneous inoculation of arboviruses that can cause
encephalitis in humans. While the olfactory route is now accepted as an
important pathway for viral entry into the CNS, it is unclear whether it
provides a way for infection to spread to other brain regions. More
recently, studies of antiviral innate and adaptive immune responses within the olfactory bulb suggest it provides early virologic
control. Here we will review the data demonstrating that neurotropic viruses gain access to the CNS initially via the olfactory
route with emphasis on findings that suggest the OB is a critical immunosensory effector organ that effectively clears virus.
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Viral infections of the central nervous system (CNS) are rare
and often devastating, leading to death or permanent

neurologic damage. Neurotropic viruses may gain access to the
CNS via several routes including anterograde neuronal spread
through sensory nerves,1 across the blood-brain barrier (BBB) as
free virions, or via the entry of infected immune cells.2 However,
studies examining the kinetics of neurotropic viral invasion after
peripheral routes of inoculation have identified the olfactory bulb
(OB) as the earliest site of CNS infection.3 Indeed, the most
direct conduit from the periphery to the brain occurs at the level
of the olfactory neuroepithelium (ONE) within the nasal cavity,
where cell bodies of olfactory sensory neurons (OSNs) reside
and send their axons into the CNS to synapse with dendrites of
mitral neurons within the olfactory bulb (OB). This route of
entry was first investigated in the early 1900s in the context of
poliovirus infection. Faber and Gebhardt first demonstrated that
virus establishes its initial focus in the OB.4 In 1936, Flexner
reported that instillation of poliovirus into the nasal cavity, but
not the stomach, leads to CNS manifestations of disease.5 Faber
and others later demonstrated that ablation of the ONEwith zinc
sulfate, which induces selective and rapid OSN necrosis,6

prevents CNS infection.5b Evidence from a variety of animal
models and human cases has since indicated that many DNA and
RNA viruses, including herpesviruses,7,7a rhabdoviruses includ-
ing vesicular stomatitis and rabies viruses (VSV, RABV),8

neurotropic flaviviruses West Nile and Japanese encephalitis

viruses (WNV, JEV),9 paramyxoviruses parainfluenza and
measles viruses (PIV, MV),3f,10 alphaviruses Venezuelan Equine
Encephalitis and chikungunya viruses (VEEV, CHIKV),11

Bunyavirus LaCrosse virus (LACV),12 and influenza A13 are
detected first within the OB during neuroinvasive infection.
Several authors have also shown that virus within the OB is
quickly cleared.8a,14 This and the overall rarity of viral
encephalitis suggests effective, neuroprotective immunity within
the OB may quickly eliminate virus entering via this route,
protecting the rest of the brain from infection. While the
complete mechanisms of virologic control within the OB are
unknown, studies demonstrate that innate immune mechanisms
are specialized at this site, involving interactions between
immune and neural cells and recruited leukocytes that influence
viral infection and clearance at more distant brain regions. This
Review will discuss the olfactory route of viral access to the CNS
with emphasis on evidence that OB innate immune response to
viral infection of the CNS is an early event that controls viral
entry and replication throughout the CNS.
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■ ANATOMY AND VIRAL INFECTIONS OF THE OB

Viruses that utilize the olfactory nerve as entry into the CNS
encounter many cell types progressing from the nasal cavity into
the central olfactory nervous system. Cells of the ONE, which is
located within the nasal cavity, include olfactory receptor
neurons (ORN), supporting (sustentacular) cells, basal cells,
microvillar cells, and Bowman’s glands.3j,14d,15 ORNs are unique
among these cells since they establish the connective conduit
between the nasal cavity and the CNS. These specialized bipolar
neurons extend a single dendrite from their neuronal cell body
into the ONE and an axon that crosses the basement membrane
of the ONE and passes through the cribriform plate, which
separates the nasal and cranial cavities. These axons terminate in
theOBwhere they converge to form glomeruli and form synaptic
contacts with neurons resident in the OB. ORN axons are
supported by olfactory ensheathing cells (OECs) (i.e., Schwann
cell-like glial cells) and are surrounded by mucus-secreting
Bowman’s glands, connective tissue, and blood and lymphatic
vessels.3j Within the olfactory glomeruli, ORN axon terminals
convey information to projected neurons such as tufted cells and
mitral cells, which transmit information deeper into the CNS
primarily the ipsilateral primary olfactory cortex.
Evidence of viral transmission along the olfactory route is

based on studies in experimental animals and a few human cases.
Entry into the CNS has been documented through detection of
viral antigen within the olfactory mucosa and within the
glomerular and mitral cell layers of the OB for many viruses
including, influenza virus, HSV, poliovirus, paramyxoviruses,
including canine distemper virus (CDV), Hendra virus, and
Nipah virus, VSV, RABV, parainfluenza virus, adenoviruses, JEV,
WNV, chikungunya virus, La Crosse virus, mouse hepatitis virus,
and bunyaviruses which have been extensively reviewed
previously3j,16 (Table 1, Figure 1). Although rare, viral antigen
has also been directly detected in ORNs within the olfactory
mucosa following infection as is the case with influenza
virus,1i,3b,17 several herpesviruses, including HSV-1, bovine
herpesvirus (BHV)-5, and equine herpesvirus (EHV)-1 and
-9,16 CDV,18 VSV,3h and RABV,19 suggesting that these viruses
are transported through the axons of ORNs to access the OB.
Several studies have concluded that the initial infection of

influenza A occurs at the olfactory bulb (OB).17d,20 H5N1 is the
most common form of influenza A virus detected in the olfactory
bulb of patients and animal models.20a,21 More recently, studies
of HPAI H5N1 in animal models reported the entry of H5N1
virus primarily through the olfactory nerve with viral antigen
detectable in the olfactory mucosa and olfactory receptor
neuron.17b,20b Studies in H7N9-infected ferrets similarly
detected viral antigen in the OB by 3 days postinfection.22

Additional studies have demonstrated that influenza A virus
infection of the OB is not strain specific.3j,20c,21,22 Postmortem
study of an immunocompromised human infant infected with
H3N2 virus depicted the presence of viral load in the olfactory
bulb with viral antigen detected in both neurons and glial cells.3j

These studies strongly suggest that olfactory route is the primary
route for CNS invasion in Influenza A mediated infection.
Previous studies have demonstrated that HSV, RABV, VSV,

and influenza viruses are capable of transaxonal transport.20a,23

Potentially viruses may also access the OB though direct
infection of OECs or via channels in the cribriform plate. OECs
are unique cells that form a continuous channel surrounding the
axons of ORNs from the ONE as it passes through the cribriform
plate and ends the OB. All together, numerous studies have

shown that a variety of viruses are able to use the olfactory nerve
as a shortcut into the CNS, however more comprehensive studies

Table 1. Neurotropic Virus Detection in the Olfactory
Neuroepithelium (ONE), Olfactory Sensory Nerve (OSN),
Olfactory Bulb (OB), and Other Regions of the CNS
Following Infection in Various AnimalModels via Isolation or
by Immunohistochemistry (IHC)a

virus detection

virus (strain)
route of
infection ONE OSN OB

other
CNS
regions ref

Influenza A (PR8) i.n. + + + 13b, 20c

Influenza A
(R404BP)

i.n. + 17e

Influenza A
(H5N1)

i.n. + + + 1i, 13a,
17a, d,
36

Influenza A
(WSN/33)

i.n. + + + + 3b

Herpesvirus i.n. + + + + 7b, 37

Parainfluenza
(Sendai)

i.n. + + n.d. 3f, 38

Nipah virus i.n. + + + + 3g, 39

Hendra virus i.n. + + + 1d

Western Equine
encephalitis virus

i.n. + + + 40

Venezuelan Equine
encephalitis virus

f.p. + + + + 3c

Eastern Equine
encephalitis virus

i.n. + + + + 41

Rabies virus (CVS) i.n. + + 19

Vesicular stomatitis
virus

i.n. + + + 42

Poliovirus i.n. + + + + 4, 5b, 43

Japanese
encephalitis virus

i.n. + + n.d. 44

St. Louis
encephalitis virus

i.p. + + + 45

West Nile virus i.p., f.p., i.n. + + + + 46

Murray Valley
encephalitis virus

f.p. + + 47

an.d.: none detected.

Figure 1. Viral entry via the olfactory neuroepithelium induces antiviral
responses in the olfactory bulb. Depicted is a cartoon of a mouse brain in
which viral particles enter the CNS via axons of olfactory receptor
neurons within the neuroepithelium of the nasal cavity. Infection of
neurons within the olfactory bulb (OB) leads to expression of innate
cytokines and chemokines, which recruit lymphocytes and antigen
presenting cells.
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are necessary to define the mechanisms by which viruses use the
olfactory nerve as a route of entry into the CNS.

■ INNATE IMMUNE RESPONSES OF THE OB DURING
VIRAL INFECTION

Early studies examining transneuronal spread of viruses from the
ONE to the OB reported that virus could no longer be detected
at the latter site several days after infection. Investigators
interpreted these findings as evidence that this brain region was
unsatisfactory for growth, rather than postulating that it had
specialized immune responses that efficiently cleared virus. In an
early study, innate immune responses within the OB after
application of VSV to the ONE included expression of nitric
oxide and up-regulation of major histocompatibility antigens
(MHC) I and II by infected astrocytes, microglia and endothelial
cells.14a Additional studies utilizing viruses or pathogen
associated molecular patterns (PAMPs) demonstrated OB
expression of innate cytokines including interleukin 12,3h

tumor necrosis factor (TNF)-α, TNFR1, interleukin (IL)-
1β,14f and IkappaB.24 For instance, recent studies with the
flavivirus, tick-borne encephalitis virus (TBEV), and the
alphavirus, Sindbis virus (SINV), confirm that pattern
recognition receptor (PRR) signaling within the OB results in
the upregulation of the innate cytokine interferon (IFN), which
restricts viral replication in the CNS. This upregulation of IFN
leads to increased expression of interferon regulatory factors
(IRFs), which enhance the ability of IFN to control viral
replication.14e,25 Indeed, the expression of innate immune
molecules within the OB results in rapid antiviral responses
and improved survival. Similarly, intranasal inoculation of H1N1
virus, leads to upregulation of cytokines within 5−7 h post
infection.20c

The source of some of these innate immune molecules has
been traced to the OECs that envelope the olfactory nerves
throughout their trajectory from the ONE to the OB. OECs,
which have significant roles in OB development and repair,26 are
postulated to provide immunological protection against
neutrotropic pathogens. Treatment of OECs with PAMPs or
agonists of PRRs leads to production of iNOS,27 nuclear
translocation of nuclear factor kB (NK-kB) with cytokine
expression.28 Other studies implicate OB microglia in innate
immune responses to PAMPs or damage associated molecular
patterns (DAMPs) at this site.29 The role of these innate immune
molecules in the OB during viral infections is unclear. Studies
using intranasal infection with lab adapted influenza A did not
impact survival in mice deficient for iNOS, type I or II interferon
(IFN) receptors, or transporter associated with antigen
processing (TAP)1.3b However, persistent infection could be
detected in 80% of surviving animals. Thesemice also had limited
CNS recruitment of infiltrating lymphocytes suggesting that
innate immunity in the OB limits viral persistence and induction
of adaptive immunity within the CNS. The role of OB innate
immune responses by neural and microglial cells in leukocyte
trafficking and function is an active area of research.

■ LEUKOCYTE TRAFFICKING INTO THE OB DURING
VIRAL ENCEPHALITIS

Although most viruses that invade the CNS via the olfactory
nerve cause an inflammatory response characterized by an influx
of neutrophils and mononuclear cells, there are few in-depth
studies on their specific role. While it has been shown that type I
IFN is critical for survival following intranasal infection with VSV

it is also necessary for the induction of IL-12 by astrocytes and
inflammatory monocytes.8a,30 Multiple studies have demon-
strated that the expression of IL-12 decreases viral titer within the
OB and is strongly correlated with the rapid infiltration of both
CD4+ and CD8+ T cells as well as NK cells.8a,14a,b,30

Lymphocyte infiltration into the OB has been shown to be
instrumental in limiting viral replication and spread beyond the
OB as has been shown following T lymphocyte depletion during
VSV31 and MHV32 infection. In addition, TAP-1 deficient mice
were used to demonstrate that the ability to present antigens
within the context of MHCI was crucial for T lymphocytes to
maintain viral control within the OB following MHV infection of
mice.10 Interestingly, a recent study demonstrated that dendritic
cells infiltrate into the OB during VSV infection33 suggesting that
these cells may play a role in the activation of recruited
lymphocytes. In addition to T lymphocytes we recently observed
that NK cell infiltration into the OB during WNV infection is
crucial for viral control specifically within the hindbrain regions
of the CNS (under review). Together these studies demonstrate
the lymphocytic infiltration is instrumental in limiting viral
replication and spread and that in their absence or inability to be
full activated, viruses are able to spread from the OB into other
regions of the CNS increasing damage.

■ CONCLUDING REMARKS

Many viruses are able to invade the CNS via the olfactory route.
In general, if a viral infection is not contained locally (due to
inefficient intrinsic and innate immune responses), it can spread
to vital organs, causing severe pathologies. Viral spread within the
CNS can be severe as well as deadly not only due to the fact that
infected neurons may die, but also because of the immune-
mediated pathology in the brain. The OB, although commonly
recognized as a sensory organ for olfaction, also serves as an
immunoeffector organ within the CNS. The CNS encounters an
unknown number of pathogens primarily through the nasal
cavity. Since this sensory organ is intimately exposed and
particularly vulnerable it is likely there was high evolutionary
pressure for neuroprotective mechanisms within the olfactory
system. Use of genetic approaches to deplete OSNs34 via
temporally controlled diphtheria toxin A expression or condi-
tional deletion of innate immune signaling in response to type I
or II IFNs35 will elegantly address the role of these neurons and
innate immune responses in virologic control within the OB. In
addition, the role of supporting cells, such as the OECs, during
CNS viral infection is an area not well explored. It is unclear
whether OECs are susceptible to certain viral infections or
whether they have a definitive role in immunoprotection and
spread of viruses from the OB to the rest of the CNS. As further
studies are accomplished focusing on this vital yet vulnerable
organ, it will becomemore clear that the OB is a complex sentinel
immune organ that is instrumental in preventing passage of
pathogens to other vital regions of the CNS preventing injury of
neural cells and/or immunopathology.
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